
84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document before
using it for work i

Checkout and Launch Control System

Real Time Control Application Software

Development Plan

84K00070-002

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document before
using it for work

ii

RTC Applications Software Development Plan

Approval :

Retha Hart
CLCS Program manager

Ralph Esposito
USA CLCS Program Manager

Concurrence :

Benjamin Bryant
CLCS Applications Software

Marty Winkel
USA CLCS Applications Software

Jeff Wheeler
CLCS User Liaison

Richard Ikerd
Application Product Team (USA)

Ken Hale
Application Product Team (NASA)

Norm Peters
Application Product Team (USA)

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document before
using it for work

iii

Prepared By : Real Time Control Applications Software
United Space Alliance
Kennedy Space Center, Florida

Supporting Document Note: Acronyms and definitions of many common CLCS terms
may be found in the following documents: CLCS
Acronyms 84K00240 and CLCS Project Glossary
84K00250.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document before
using it for work

iv

REVISION HISTORY

REV DESCRIPTION DATE

Basic Promoted per approval by signatories. Updated to standard
format. ljp

5/12/98

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document before
using it for work

v

LIST OF EFFECTIVE PAGES

Dates of issue of change pages
are:

Page No. A or D* Issue or Change No. CR No. Effective Date**

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document before
using it for work

vi

Table of Contents

1. INTRODUCTION...1

1.1 PURPOSE...1
1.2 SCOPE..2
1.3 REFERENCE DOCUMENTS...2
1.4 RTC APPLICATION SOFTWARE GOALS ..2
1.5 PRODUCTIVITY ENHANCEMENT METHODS ...3

2. GENERAL INFORMATION...1

2.1 APPLICATION SOFTWARE PARTICIPANTS ...1
2.2 CHANGE SOURCES...1
2.3 CHANGE EFFORT..1
2.4 SOFTWARE COMPONENT CRITICALITY..2

3. APPLICATIONS DEVELOPMENT INFRASTRUCTURE...1

3.1 STREAMLINED FUNCTIONAL STRUCTURE ...1
3.1.1 Application Software Project Management ..1
3.1.2 Application Software Product Team ..1
3.1.3 Analysis and Design Group...2
3.1.4 Integrated Product Teams ..2

3.1.4.1 Requirements Definition Team .. 3
3.1.4.2 Software Development Team .. 3
3.1.4.3 Software Validation Team ... 3

3.2 RESOURCE POOL ...4
3.3 ASSIGNMENT OF RESPONSIBILITY TO AN APPROPRIATE LEVEL ...4
3.4 AUTOMATED COMPONENT TESTING..6
3.5 ITERATIVE TESTING ...6
3.6 BUILT-IN QUALITY PHILOSOPHY ...7
3.7 VALUE ADDED METRIC GATHERING...8
3.8 MEANINGFUL PRODUCT DOCUMENTATION...8

4. RTC APPLICATION SOFTWARE DEVELOPMENT PROCESSING...1

4.1 CHANGE SCREENING PANEL PROCESSING ..2
4.2 IPT STATEMENT OF WORK ASSESSMENT ...2

4.2.1 Major Statement of Work Assessment ..3
4.2.2 Minor Statement of Work Assessment ..3

4.3 REVIEW PANELS ...3
4.3.1 Application Change Review Panel...3
4.3.2 Requirements Review Panel ...4

4.3.2.1 Membership.. 4
4.3.2.2 Required Products .. 5
4.3.2.3 RRP Process .. 5

4.4 IPT STATEMENT OF WORK IMPLEMENTATION..6
4.4.1 Requirements Definition and Capture..7
4.4.2 Requirements Analysis and Allocation ..7
4.4.3 Software Design ...8
4.4.4 Software Production ...8

4.4.4.1 Overview... 8
4.4.4.2 Code Writing ... 9
4.4.4.3 Tools and Languages.. 9
4.4.4.4 Inspection Process.. 9

4.4.5 Testing ...10
4.4.5.1 Unit Testing... 10
4.4.5.2 Integrated Testing ... 11

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document before
using it for work

vii

4.5 IPT VALIDATION AND USER ACCEPTANCE...12
4.5.1 Validation..12
4.5.2 User Acceptance ..13

A. GLOSSARY... A

B. RTC APPLICATION SOFTWARE CSCI .. B

1.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work 1

1. IN

The Real Time Control (RTC) Application Software Development Plan (SDP) for
CLCS must define the mechanisms to enable rapid development of software to
satisfy CLCS milestones. This plan applies to both the CLCS initial
project development effort for RTC Application Software as well as
sustaining that software after initial development completion. RTC
Application Software development is a major effort that must be flexible
enough to capture existing requirements and to simultaneously incorporate
both internal and external change drivers.

1.1 PURPOSE

This plan applies the concepts described in the overall CLCS System
Software Development Plan (84K00070-100). The CLCS System Software SDP
provides integration of the infrastructure (provided by system and
application services) to support application software components that
control and monitor the Shuttle, GSE and facility hardware. Although
similar in concept, the RTC Applications Software Development Plan differs
from the System Software SDP for the following reasons:

1. The RTC Application Software environment requires the active
participation of the personnel with systems knowledge in all phases of
the process (e.g., validation testing being performed by the user rather
than an IV&V team) that necessitates a development/sustaining plan that
is sufficiently different from the System Software world to warrant a
separate document.

2. The System Software SDP relies upon a structured review board concept to
ensure all project requirements are properly identified and captured.
The realm of Shuttle/GSE knowledge is outside of the expertise of these
review boards. The concepts presented in this document place the
responsibility for proper requirements capture/definition and
implementation on personnel who are qualified and knowledgeable for that
function. The review panels for RTC Application Software perform an
oversight and management function rather than a technical review
function.

3. An internal applications team provides the day to day integration
between application software and the system world. This method allows
applications to support the big CLCS picture, while the teaming within
applications supports the end user.

Almost as important as the plan is the background information that drives
its creation. An understanding of the influences that mold the plan helps
capture, for future users, the all important ‘why?’. As the ‘why’ changes
over time, the process can be reevaluated. The following topics are part
of the CLCS application software plan:

1. Application software goals
2. Productivity enhancement methods
3. General information
4. Applications development infrastructure
5. Application software development processing

The plan will explicitly define the differences between the RTC Application
Software development and the post-development sustaining process.

1.2

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

2

SCOPE

This document applies to all RTC Application Software developed to support
the CLCS project. It includes all reused and commercial-off-the-shelf
(COTS) software except as noted.

1.3 REFERENCE DOCUMENTS

The following documents were used in the development of or are referenced
in this SDP:

84K00050 CLCS Program Management Plan
84K00051 CLCS Project Plan
84K00052 CLCS Configuration Management Plan
84K00053 CLCS Systems Engineering Management Plan
84K00070-100 CLCS System Software Development Plan
84K00230 CLCS HCI Style Guide and Standards
84K01700 RTC Application Software Documentation Standard
84K01710 RTC Application Software Architecture Standard
84K01720 RTC Application Software Implementation Standard
84K01830-xxx RTC Application Software Development Practices
84K07500-010 CLCS Programming Standard
DP-P-07-BASIC RTC Application Software Development Flowchart

This plan is derived from the CLCS System Engineering Management Plan
(SEMP), 84K00053, which defines the overall system engineering process for
the CLCS project, and the System Software Development Plan, 84K00070-100.
Selected information from these documents is included in this document to
aid in understanding how the RTC Application Software development process
fits into the overall system engineering process.

1.4 RTC APPLICATION SOFTWARE GOALS

The RTC Application Software SDP must establish a process that meets the
following goals:

1. Safety - The process must ensure that personnel safety and Shuttle
hardware is not compromised.

2. Cost - The process must be inherently designed for efficiency to reduce
cost. There are several components of cost:
• The overhead required to develop or make a change
• The cost of actually performing the work
• Potential monetary savings as a result of implementing a change
• Long term product maintainability

3. Traceability - The process must provide a level of traceability from
development/change driver through implementation.

4. Accountability - The process must provide a scheduling method to track
due dates (constraints) and a method to capture the total cost of a
development effort.

5. Repeatability - The process must be organized in such a way that it is
deterministic and repeatable for all Application Software developed
components.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

3

6. Operational Knowledge ‘Recapture’ - Application Software must capture
the operational ‘whys’. When a system matures, ‘why’ a component or
process exists is often lost (only the ‘what’ and ‘how’ remain). RTC
Application Software development must maintain the ‘why’. One purpose
of this document is to ‘recapture’ the application process ‘why’ for
future users.

1.5 PRODUCTIVITY ENHANCEMENT METHODS

In any project, change is inevitable. Limited funding restricts the amount
of available resources, requiring development/change processing to be as
efficient as possible to meet project goals. Several different methods
will be used to enhance productivity:

1. A common ‘style’ for all of applications software will eliminate much of
the specialization that occurs in applications software production.
While aspects of a particular end item may be unique, the implementation
‘style’ will be consistent across systems. This consistency allows the
creation of a ‘pool’ of software production personnel to assist in the
application software sustaining effort. While it will be necessary to
maintain a certain level of system specialization (to ensure
consistency), a “pool” of Software Engineers will provide flexibility in
managing both the development and sustaining efforts.

2. Reuse of common “building blocks”, developed using a common style, will
greatly enhance efficiency over the development of new products.
Placing these “building blocks” in a common, well documented location
further enhances reusability.

3. Teaming will be used to involve ‘core’ members in the entire process of
RTC Application Software activities. Core members include personnel
with expertise in system knowledge and software production. The
traditional ‘fence’ between hardware and software functions does not
exist with effective teaming.

4. Delineation of responsibility is a key factor in increasing
productivity. The number of ‘boards’, ‘reviews’, and signature
requirements will be the minimum required, without sacrificing safety or
quality control. Signatures must mean something. Change management
processing with large number of ‘checkpoints’ (signatures) typically
suffer from an ‘insulating effect’. When the number of ‘required’
signatures increase, insulation occurs, the assumption being ‘someone
else’ will catch any problems.

5. Rapid prototyping will be used to establish the ‘best’ path that enables
RTC Application Software to reach its milestones. Prototyping allows
for the development of streamlined and efficient processes before
initiating all product teams. Prototyping is best performed by a
limited number of ‘pathfinder’ projects. The products developed during
the prototyping efforts should be treated as potential throw-away
products.

6. Communication of both success and problem areas encountered during the
process are integral to productivity. The focus, historically, has
been isolating and correcting problem areas. Applying success stories
(discovered from within RTC Application Software and from the external
world) throughout the development process has the potential to increase
overall productivity significantly.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

4

1.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work 1

2. GE

This section describes the basic elements that affect the development and
sustaining of RTC Application Software. The applications workforce exists
to implement the requirements that are driven by varying change sources.
The level of effort necessary to perform this implementation is dependent
upon the type of development/change effort and the software component
criticality.

2.1 APPLICATION SOFTWARE PARTICIPANTS

Conceptually, there are four ‘classes’ of personnel who support RTC
Application Software development:

• Management
• Integration
• Implementation (Development/Sustaining)
• User

 Each ‘class’ of personnel has two primary elements associated with it:
• Systems Knowledge - provides the why and what of the software
• Software Implementation - provides the how of the software

2.2 CHANGE SOURCES

There are two primary sources of change that affect RTC Application
Software development: external drivers and internal drivers. Change is an
asynchronous process, with the type and number of drivers appearing at
random. The sources are:

1. External which includes Shuttle design center changes, KSC generated
(ground) system modifications and CLCS system software changes. These
changes typically are mandatory, requiring an implementation by a given
milestone. Often the change provides a funding source. These changes
are the most ‘random’ since the external source is driven by influences
outside RTC Application Software.

2. Internal change sources originate from within the applications
community. These include operational enhancements to existing software,
new software components that are required as the result of daily
operations and changes required to correct software discrepancies. Most
of these changes do not have mandatory milestones (excluding some
discrepancy processing), but do have a level of relative priority.
Because these changes occur from within, they offer the potential of
planning implementation.

During the CLCS development process, external change drivers will need to
be incorporated into CLCS application deliveries.

2.3 CHANGE EFFORT

The amount of effort to implement a change can be grouped into two
categories: minor and major. Change sources (both internal and external)
can impose different levels of effort. Adequate personnel resources must
be available to handle concurrent levels of effort. The RTC Application
Software process will make a distinction between minor and major change
processing.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

2

1. A major change requires more than a few days to implement. Often the
change driver has an impact on several systems. These changes require a
more formal integration effort to ensure adequate scheduling and
availability of resources. A change is considered major if the total
change implementation effort estimate exceeds thirty (30) man-hours (for
all activities).

2. A minor change effort is of limited scope, can be assessed quickly and
can be implemented in a minimum of time. In the classical change
management system, the cost of performing a minor change is often
dwarfed by the overhead required to support the change. A change is
considered minor if the total manpower estimate is less than or equal to
thirty (30) man-hours (for all activities).

2.4 SOFTWARE COMPONENT CRITICALITY

Software component criticality is based on how the application software
component is used. Application component criticality may be different from
the criticality assigned to the hardware component. The criticality
classification is used to determine the level and type of quality oversight
required during the different phases of development. There are three
levels of ‘criticality’ in the RTC Application Software environment. A
component ‘bubbles’ to the highest level of criticality applicable.
Software Classification Practice 84K01730-102 defines the process for
classifying software modules.

1. Critical components are the “front line” items whose operation must be
ensured to allow a successful commitment of the vehicle to spaceflight.
As a minimum, this includes the Launch Sequencing/Launch Commit
function, and the propellant loading function. The criticality of these
components requires a level of quality support above the baseline.

2. Sensitive components encompass the control and monitor of items that, if
not operated properly, could result in personnel injury or hardware
damage. This class of items includes “reactive” responses to off-
nominal conditions and the control of high energy systems (e.g.,
cryogencis, hydraulics, power units, etc.). The sensitivity of these
components requires a minimum level of independent quality support to
ensure proper validation of requirements.

3. Operational support components make up a large portion of the RTC
Application Software products and are classified as non-critical. These
are used for system monitor support and the control and monitoring of
non-hazardous systems and the monitoring of systems where “reactive
control” has been delegated to ‘external systems’ (e.g., a smart HIM,
on-board sequence, etc.). An operational support component would not
have an associated time critical safing function. The benign nature of
these components requires less quality oversight.

1.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work 1

3. AP

This section details the key structures that have been established for RTC
Application Software development. When viewed as a whole, these items
establish the infrastructure that enables applications to obtain its goals.
The infrastructure enables efficient change processing during both the
development and the sustaining process.

The RTC Application Software development process provides the following key
components:

1. Streamlined functional structure
2. Resource pool
3. Assignment of responsibility to an appropriate level
4. Automated component testing
5. Iterative testing
6. Built-in quality philosophy
7. Value added metric gathering
8. Meaningful product documentation

3.1 STREAMLINED FUNCTIONAL STRUCTURE

There are three levels of functional groups that directly participate in
RTC Application Software production:

3.1.1 Application Software Project Management

Application Software Project Management provides an interface to the CLCS
project management team during the development phase. Applications
management is chaired by NASA with support from the SFOC contractor. Both
the NASA and SFOC Applications Software project management team provide
overall guidance, resource acquisition (hardware, software and personnel),
provisions for training, and project level issue resolution / status.
Application Software project management charters the Application Software
Production Team (APT) to provide technical leadership. As the project
moves into the sustaining mode of operations, the Management interface will
transition from CLCS to SFOC.

3.1.2 Application Software Product Team

The APT provides the working level technical direction and oversight of the
production of RTC Application Software. The APT is three individuals
representing Systems Knowledge (Shuttle Engineering) and Software
Production (Applications Software). The APT functions as a single ‘unit’
with each member having knowledge in all the processes required for
applications development. When an area of specialization is required, the
APT member with the specific expertise takes the lead. The APT charters
Integrated Product Teams (IPTs) to provide specific application software
products. The APT interfaces with Systems Software to resolve
Applications/System Software issues. The allocation of resources and
resolution of inter-IPT issues are also APT functions. The APT provides
common standards, practices, and development tools to all IPT’s.

3.1.3

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

2

Analysis and Design Group

The Analysis and Design Group (ADG) is a collection of people from both the
Systems Knowledge and Software Production disciplines. Their purpose is to
translate the User Requirements provided by the individual Shuttle
Engineering groups into a Functional Requirements Document (FRD). The
members of the ADG are not assigned to an IPT. While members of the ADG
interact with IPTs associated with the User Requirements they are
translating, the ADG is independent from the IPTs.

During this effort, the ADG is responsible for:
• Coordinating with the Shuttle Engineering groups to ensure correct

interpretation of the User Requirements.
• Eliminating duplication of requirements by identifying those

requirements that are common between systems. This paves the way
for infusing software reuse into the development effort.

• Ensuring all requirements are testable and do not contain any
implementation specific details

3.1.4 Integrated Product Teams

Each individual RTC Application Software IPT is a collection of people with
a diverse set of skills that are tasked to deliver a CLCS application
software capability. The scope of an IPT may encompass multiple, related
systems. IPTs provide an oversight function to the software development
effort to ensure User Requirements are satisfied and that the end users
become familiar with the software on an increment basis. Each IPT is
comprised of :

1. Systems Knowledge personnel (e.g., Hardware Engineering, System
Engineering, Test Engineering)

2. Software Production personnel (e.g. Software Engineers, Software
Developers)

3. Simulation Support personnel
4. Others as required

Each IPT is comprised of smaller sub-teams that perform the work assigned
to them. Figure 3-1 provides an illustration of an IPT structure. The IPT
is the mechanism for coordinating the activities of these sub-teams.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

3

Integrated Product Team

Requirements
Analysis

Group

User Requirements
Definition

Software
Development

Validation Testing
and

OMI Update

Figure 3-1 : Integrated Product Team Structure

3.1.4.1 Requirements Definition Team

The responsibility of this sub-team is to capture the user requirements in
the Functional Requirements Document. This team is comprised of
representatives from the Shuttle Engineering discipline, Software
Engineering and the ADG.

3.1.4.2 Software Development Team

Upon completion of the Functional Requirements, the Software Development
Team transforms the FRD requirements into a software implementation. This
team is comprised of individuals knowledgeable on software development
practices, languages and tools. This team is responsible for:

• Developing design documentation, software code and for performing
unit and integrated debug testing

• Maximizing the reuse of software components to reduce the
duplication of code and testing

• Providing coordination with the IPT on technical issue resolution
and schedule progress

• Providing any simulation math model upgrades that are a result of
new requirements

3.1.4.3 Software Validation Team

The Software Validation Team is responsible for the final validation
testing of the software developed for the IPT and for the update of
existing Operations and Maintenance Instructions (OMIs) to incorporate use
of the new software. This team is comprised primarily of Shuttle
Engineering personnel with assistance from the Software Development Team as
required. This team is responsible for:

• Development of all validation test procedures. These procedures
will test the software against the Functional Requirements
Document.

• Conducting all validation testing.
• Update of all OMIs affected by the software changes.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

4

3.2 RESOURCE POOL

The APT is responsible for the allocation (by number) of Software
Production and Systems Knowledge personnel to perform applications
activities (acquisition of identified resources is performed by
management). In the sustaining environment, each IPT will be allocated a
baselined manpower equivalent, typically systems knowledge and software
production individuals (on a potentially part time basis). This allocation
is designed to provide each IPT with the capability to perform minor change
processing quickly and efficiently. For major changes, the IPT will
identify resource requirements to the APT. The APT is responsible for
prioritization of tasks when the resource pool approached being empty.

3.3 ASSIGNMENT OF RESPONSIBILITY TO AN APPROPRIATE LEVEL

Providing a solid infrastructure which includes a charter (definition of
responsibility) and a common approach, the RTC Application Software process
assigns the responsibility for producing products at the lowest level
possible. The key in the assignment is establishing open lines of
communication between the responsible functions. Problems will be
communicated before they become issues and non-issues need not be
continually ‘statused’ by higher levels. The bulk of the applications
production occurs at the IPT level and this is where the largest portion of
responsibility resides. Figure 3-1 illustrates the RTC Application
Software Functional Structure.

RTC Application Software
- Overall Guidance
- Resorce Acquisition
- Project Issue Resolution/Status
- Charters APTProject Management

Application
Product Team

Analysis and
Design Group

IPT IPT IPT

Technical Direction

Figure 3-1 RTC Application Software Functional Structure

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

5

1. Project Management has the following responsibilities:
• This oversight functionality is comprised of:

• NASA Application Software Division Chief
• SFOC RTC Application Software Manager

• Overall project guidance
• In the development phase, provide a common focal point for all

non-technical project level issues (e.g., delivery schedules)
• In the sustaining phase, provide a common focal point for ensuring

the production activities fit within the scope of the Shuttle
program guidelines.

• Budget and Resource Management
 Acquire the resources necessary to develop and sustain RTC Application

Software through determination and management of the required labor
and non-labor budget. This commonly includes:
• Acquisition of personnel
• Acquisition of any hardware required to develop RTC Application

Software
• Acquisition of COTS Software packages required to develop RTC

Application Software
• Identification and acquisition of training for development and

user personnel

2. The APT has the following responsibilities:
• The APT is comprised of:

• Systems Knowledge Representative
• Software Production Representative
• NASA Application Software Division Representative

• Charters each application IPT and establishes core participants
• Uses the master RTC Application Software delivery schedule as

input
• Identifies a “focal point” for each sub-team within the IPT

• Performs the integration function among IPTs and between RTC
Application Software and the CLCS project (on a technical level)
• Provides an oversight function to ensure commonality (in

appropriate areas) across all IPTs
• Allocates resources to meet deliveries/schedules
• Resolves inter-IPT issues
• Coordinates resolution of CLCS issues pertaining to RTC

Application Software
• Coordinates with System Software services for deliveries and

their contents
• Provides common processes, tools, directions

• Responsible for the development and maintenance of this document
• Responsible for the development and maintenance of all standard

practices and guidelines associated with Applications Software
• Responsible for defining and evolving the Applications Software

design standard
• Provides input to the CLCS programming standards and guidelines

• Chairs the Application Change Review Panel (ACRP) and the
Requirements Review Panel (RRP)

• Provides development status to Delivery Manager
• Presents IPT concepts to CLCS Concept Design Panel

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

6

3. The Analysis and Design Group has the following responsibilities:
• The ADG is comprised of:

• Systems Knowledge Representatives
• Software Production Representatives

• Definition of the Functional Requirements Document format
• Development of a common FRD that contains generic requirements that

can span multiple systems. These “common” requirements can then be
referenced in a system’s FRD rather than duplicating them.

• Participation in the development of system FRDs to help ensure
consistency between systems

• Identification of test plans for all requirements. These are not a
step-by-step procedure, but are outlines that describe the
functionality that needs to be tested.

4. IPTs have the following responsibilities:
• Each IPT is comprised of:

• System Knowledge personnel
• Software Production personnel
• Simulation personnel

• Refining the IPT charter
• Developing a detailed schedule
• Identifying resource requirements
• Following processes and standards established for application

software
• Developing applications software products

• Software
• Documentation
• Procedures

3.4 AUTOMATED COMPONENT TESTING

RTC Application Software will make every effort to use automated COTS test
tools. Automated routines (developed in a test control language) will be
stored in a common library. The routines provide repeatable ‘difference
based’ methods to validate component software. Levels of test routines can
be created to test larger control ‘parts’. For example: software
production personnel will use scripts to test ‘atomic’ components, higher
level scripts will test assemblies, and even higher scripts will test
modules. Test scripts will be developed to test all paths available. This
hierarchy of automated test scripts enables all software involved in a
change to be fully tested in a minimum of time; unlike the CCMS
verification which typically only test the differences because of the
extensive manual effort that is involved.

3.5 ITERATIVE TESTING

Requirements verification testing at each phase is a key part of the CLCS
design philosophy. The first two phases are performed in the development
environment with subsequent phases moving to an operational environment.
Throughout the development process, informal testing will be performed to
make sure the desired operability is provided. This informal testing
ensures problem areas are addressed early in the development cycle. IPTs
will perform the following types of testing:

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

7

1. Detailed End Item Component (object) level testing will use automated
routines (where applicable) to test every path supported by the
component.

2. Detailed module testing will validate the functionality of assembled
components.

3. Interface testing of the assembled modules will be performed (again
using test scripts). The interface testing begins to test operational
control concepts. The CLCS transition strategy breaks this phase into
distinct pieces: Integrated Application and Systems Integration. When
testing the Integrated Applications portion, much of the Systems portion
is exercised.

4. Validation tests are performed to verify application functionality. The
scope of validation will change depending on the level of effort
required to implement the change and on the software component’s
criticality classification. For example, when the internals of a
component change (without affecting the external interfaces), the
component will be thoroughly tested and a minimal interface test will be
performed. Problems detected during validation will be documented and
tracked outside the formal PRACA system (using the Configuration
Management tool). Only problems not corrected prior to the software
being released as “ready to use” will require formal PRACA
documentation. When validation has been completed, the applications
component is considered ‘ready for use’.

5. The final level of testing is User Acceptance. User acceptance verifies
that the applications product not only implements the requirements, but
can be operated by the variety of system users. User acceptance
includes stand-alone, cluster and integrated simulation practice via a
simulation model. Problems detected in the User Acceptance phase
require formal documentation and remedial action. In the sustaining
environment, user acceptance is implied during the validation phase for
minor changes and, depending on the impact, may require formal
acceptance for a significant major change.

3.6 BUILT-IN QUALITY PHILOSOPHY

The two previous sections set the stage for built-in quality. Each of the
five phases of testing uses informal and formal processes that help ensure
the delivered product meets requirements. A quality function is provided
as the formal check in the system. Details on the quality role are located
in the Application Development Process section.

In CLCS, the Application Software quality assurance function has been
redefined. Software quality transitions from the CCMS role of quality
checker to the CLCS role of quality verification. This is not meant to
down play the importance of quality in the CCMS environment. It is a re-
focus to make use of unique skills and to remove redundancy. This will
closely align the quality processing function of Product Assurance
Engineering (PAE) with that of Hardware Engineering (QE). The RTC
Application Software process utilizes quality assurance to:

1. Participate in the validation of critical and sensitive components
2. Participate in the validation of ‘common’ components
3. Identify regression test requirements
4. Verify test requirements (including regression testing) have been

satisfied

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

8

5. Perform random audits of application test procedures to verify test
processing activities have been followed correctly

Common applications (those used by multiple systems) require a third party
(quality) test perspective. Quality support ensures the big picture is
covered, since system engineers may only be interested in their specific
application. It also provides the proper level of oversight to enable a
component to be used in critical and sensitive software without requiring
additional testing of the component. Critical application component
validation will also have quality oversight because of the requirements to
ensure successful spaceflight.

Systems knowledge personnel, along with software production personnel, will
follow standard procedures to validate system specific applications. This
implementation mirrors the Responsible Organization Representative (ROR)
implementation used during shuttle Operations and Maintenance Instruction
(OMI) testing. The ROR is responsible in ensuring the test procedure is
performed successfully. Quality will no longer be required to participate
in every application component validation.

Regression test identification moves under the quality umbrella. The ‘big
picture’ role places quality in the best position to ensure the appropriate
level of regression testing is performed. The mechanics of regression
testing are still under refinement.

3.7 VALUE ADDED METRIC GATHERING

Metrics are an important tool in understanding strengths and systemic
weaknesses in the applications cycle. Uncontrolled metric gathering tends
to impede efficiency (the process spends too much time just acquiring
data). Gathering the correct type of data, concisely, and applying the
data in a meaningful manner adds value. Before a metric is instituted, a
rationale will be developed that defines why the metric exists, what the
metric is to measure (including weights) and how the metric is planned to
be utilized. As the Applications process evolves, metric rationale will be
reviewed and refined striving to obtain value. Throughout the metric
process, one-time ‘perturbations’ will be captured, noted, but not factored
into the overall picture. Perturbations often skew meaningful data masking
the true reason behind the metric. Document 84K01730-103 describes the RTC
Application Software metric program.

3.8 MEANINGFUL PRODUCT DOCUMENTATION

The RTC Application Software documentation structure has been created to
aid in all facets of change processing. Two products are part of each CLCS
CSCI: Functional Requirements and Software Design Specifications.

1. A Functional Requirements Document (FRD) will be created for each
Shuttle, GSE and Facility system (reference Appendix B for a list of
Application Software CSCIs). The FRD is developed using a COTS tool
(DOORS) to aid in organizing requirements and enabling linking between
requirements modules. In addition to the subsystem FRD’s, a common FRD
will be created to capture and store all reused items. Subsystem FRD’s
are implemented at the hardware functionality level (independent of the
organizational level).

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

9

2. There will be two levels of the Software Design Specification (SDS).
Each level addresses a different development need:
• The Overview Design Specification (ODS) describes the RTC Application

Software CSCI and all of its elements. This document will be
developed prior to the software production phase and will provide the
foundation for detailed design and coding.
• Each element in the CSCI will be identified along with a

description of its function and a high level design description.
• Interfaces between the CSCI’s components will be defined.
• Interfaces between the CSCI and external elements will be defined.
• A cross reference between the FRD and the ODS.

 This document, while providing a good summary of each program in the
Application Software CSCI, requires less frequent updating than the
CCMS equivalent.

• The Detailed Design Specification (DDS) will be generated from in-
line comments in the source code using an auto-documentation tool.
This documentation will be generated for web-based viewing and will
not be printed. This is the information on the implementation
techniques and reasoning that belongs primarily in the developer’s
world.

The redlining of application software documentation “for approval” will be
reduced significantly. Configuration mechanisms will be implemented that
allow direct input of redlines into the document. In CCMS, the maintenance
effort of redlined original is significant, documents are often redlined
years before the software implementation is scheduled. In CLCS, the
concept is to submit (or effect) the documentation change prior to the
release or acceptance of the product. RTC Application Software CSCIs are
still required to produce documentation, it is now “formally” produced
later in the development cycle.

The RTC Application Software documentation should be viewed in the context
in which it is intended: it reflects the final implementation of a
requirement (unlike other Shuttle program documents, which are used as
change drivers). Typically, RTC Application Software documentation is used
internally (although there may be external reviewers). For example: Space
Shuttle Operational Increment (OI) changes are external forces that ‘drive’
the development effort. The FRD and Specifications are the KSC
implementation of the external driver (FRD and Specifications have no
influence on the OI change).

The RTC Application Software process requires significant ‘up-front’
effort, breaking the tendency to deliver a product, then fix it. The
Applications software effort revolves around value added repeatable
processes and procedures. The object is to do it once and to do it right
the first time.

1.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this document
before using it for work 1

4. RT

This section describes the development processes used by RTC Application
Software. Applications software development in CLCS is fundamentally
structured for efficiency. The core processing flow applies to all
development efforts (including change drivers), it is, however, customized
for different change types. The complete process is used for major
development/internal changes and is streamlined for minor “operational”
changes. The use of distinct paths obtains a much needed balance between
productivity and process. NOTE : Since this section describes the process
for both new development and sustaining work in response to a change driver
(sustaining engineering), the term Statement of Work (SOW) will be used to
denote either type of request for software development.

There are four major processes used in RTC Application Software development
and sustaining. Figure 4-1 illustrates their relationship. DP-P-07-BASIC
RTC Application Software Flowchart provides a detailed flowchart
description of the development process.

1. Change Screen Panel Processing
2. IPT Statement of Work Assessment
3. IPT Statement of Work Implementation
4. Validation and User Acceptance

Determine
Impact

Develop
Schedule

Launch Monitor/
Sequence Impact

ACRP

IPT Statement of Work Assessment

RRP
Requirements

Definition
Rqmts Analysis

& Allocation
Software
Design

Software
Production

Unit
Test

IPT Statement of Work Implementation

ReleaseValidation
User

Acceptance

IPT Validation & User Acceptance

Statement
of Work

CSP

APTeam GLS IPT

CSP Processing

New CLCS Development

Change

Figure 4-1 RTC Application Software Development Process Overview

4.1

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

2

CHANGE SCREENING PANEL PROCESSING

The Change Screening Panel (CSP) is responsible for determining which RTC
Application Software CSCIs may have an impact to a change driver. The
functional structure of Applications requirements and specifications will
allow the CSP to query WEB based documentation starting from ‘common use
items’ then branching to system specific items. The CSP will route the
change driver to the IPT responsible for the affected CSCIs, allowing
enough time for a response. In cases when the IPT cannot be identified or
when the change driver is multi-system, the package will be routed to the
APT for disposition. The APT is responsible for the disposition of
integrated change drivers to (1) the appropriate IPT or (2) forming an IPT
to work the integrated issue. All change driver implementation is
performed at the IPT level.

During the CLCS development phase, the CSP will use the existing CCMS
process to determine which Application Software Working Teams ASWT(s) will
assess the change driver. In addition to the required CCMS routing, the
change driver will be forwarded to the APT for information only. The APT
will distribute the package to the appropriate IPT. The IPT is responsible
for incorporating any change driver into RTC Application Software products
when that change driver has an effectivity before the IPT’s target
application delivery date. When a change driver has an effectivity after
the IPT delivery target, the RTC Application Software change processing
model will be used to provide traceability, accountability, and cost
tracking.

4.2 IPT STATEMENT OF WORK ASSESSMENT

After receiving a SOW, the IPT will assess the package for impacts to their
associated CSCIs. To develop this assessment, the IPT will determine and
document the following:

• Scope (i.e., extent of the effort)
• The criticality of the SOW using the criticality of the software

components involved in the package. The SOW criticality is based
on the highest level of the software criticality affected.

• Manpower and resource requirements (ROM estimate). It is not
necessary to identify each component affected at this point of the
process.

• Implementation schedule that satisfies the SOW milestone
• Interfaces with other IPTs (e.g., GLS IPT lead when the SOW

affects launch monitoring/sequencing functions)

There are two levels of approval processes for the SOW based on the SOW
source and the level of effort required to implement the SOW requirements.

4.2.1

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

3

Major Statement of Work Assessment

For major SOW driven by an external source (from Level 3 or other design
centers), the IPT will perform the assessment and forward the documentation
(signed by the IPT core members) to the APT and Configuration Management.
Implementation can proceed without further approval (since the SOW has
already been approved by a higher authority).

For all other major SOWs, the IPT will perform the assessment and present
it, along with rationale for the SOW, to the Application Software Change
Review Panel (ACRP). The ACRP will determine if the SOW meets approval
criteria. Implementation cannot proceed without ACRP approval.

4.2.2 Minor Statement of Work Assessment

For both externally and internally driven minor SOWs, the IPT will perform
the assessment and forward the documentation (signed by the IPT core
members) to the APT and Configuration Management. Implementation can
proceed without further approval. A follow-up report to the APT will be
required, documenting the actual time spent on the SOW. If, during the SOW
implementation, it is determined that the manpower expenditure will be
greater than thirty man-hours, the IPT must re-assess the SOW and obtain
APT approval.

4.3 REVIEW PANELS

Two milestone reviews are implemented to ensure application goals are
addressed. The ACRP is the first process in the SOW implementation which
provides initial insight into the SOW impact. A Requirements Review Panel
(RRP) is the IPT’s presentation to the APT that finalizes the impact
assessments (both manpower and resources). The RRP occurs after the
Requirements Capture and Analysis phases are complete before actual
software development starts. This is not another approval point, but
rather a means for the APT to ensure the SOW is on-schedule and that
sufficient resources are available for assignment to the IPT to meet their
schedule.

4.3.1 Application Change Review Panel

The Applications Change Review Panel is the first step of the development
process. This is where the concept of a SOW is presented, with rationale,
scope and estimated implementation costs, for approval to proceed. This
panel requires only a minimum of effort be expended before presentation to
the panel to potentially avoid unnecessary work. The panel’s primary
responsibility is to ensure the SOW meets the requirements of the program,
that the SOW rationale meets acceptable criteria and that the estimated
cost can be absorbed by the available budget and manpower resources. The
board is not responsible for ensuring the technical content of the SOW is
correct. This is the responsibility of the presenting IPT. After approval
by the ACRP, no further approvals are required to proceed.

During the CLCS development phase the ACRP function is performed by the
CLCS Systems Engineering and Integration (SE&I) Team. The CLCS Concept
Design Panel (CDP) is the development version of the ACRP. The CDP is a
formal presentation of delivery thread requirements and initial assessment
to the CLCS Design Panel. The APT, in coordination with the IPT Lead
assigned to the delivery thread, is responsible for coordinating,
developing and presenting the IPT concept to the CDP. This presentation
validates that all high-level information is in place to understand and
implement the thread requirements identified in the CLCS Delivery Document.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

4

This is the APT’s “tag-up” that the CSCIs to be developed falls within the
overall scope of the CLCS project.

The ACRP (or CDP) :

• Ensures developers understand the scope of work
• Confirms developers understand the delivery requirements and the IPT

charter (applicable to the CLCS development phase only)
• Coordinates issues and relationships with other threads/capabilities
• Confirms identification of impacted CSCIs and dependencies on other

CSCIs
• Coordinates risk issues and risk management efforts

 Required products for the panel:
• Presentation material developed using the CLCS Concept Design

Panel template (reference 84K00070-100 CLCS System Software
Development Plan Appendix A)

• Preliminary implementation schedule
• Preliminary assessment (list) of affected CSCIs
• Preliminary assessment of required resources (ROM estimate of

effort and other required resources)

4.3.2 Requirements Review Panel

The Requirements Review Panel (RRP) is the primary review given to an IPT’s
activities (that has project level visibility) prior to entering the
implementation phase of development. It is not a technical review of the
functional requirements since the associate Shuttle Engineers have the best
knowledge in that area. Instead, it is a review of the progress made to
date and of the implementation phase planning.

The goals and objectives of the RRP are:
• Ensure required products have been completed
• Review of the software element allocation
• Review and approval of the software classification assignments
• Review and approval of the implementation schedule and resource

allocation request
• Verify that an internal technical review was conducted
• Review of the CSCI identified external interfaces to ensure

compatibility across all Test Set CSCIs.
• Discussion of any issues the team needs addressed by the APTeam

Prior to the RRP, the IPT (or the CSCI leads as a minimum) shall have an
informal requirements review with the affected Shuttle Engineering
subsystems. This meeting should be a technical review of the requirements
to ensure they capture the appropriate operational knowledge.

4.3.2.1 Membership

The RRP membership is comprised of representatives from Shuttle Engineering
and RTC Application Software Engineering.

• APTeam USA Shuttle Engineering Representative (co-chair)
• APTeam USA Software Engineering Representative (co-chair)
• APTeam NASA Software Engineering Representative (co-chair)
• NASA CLCS User Liaison Representative
• USA CLCS User Liaison Representative

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

5

The RRP is an open forum and any interested individuals may attend as
desired. Meeting minutes, action items and results will be posted to the
RTC Application Software web site.

4.3.2.2 Required Products

Prior to scheduling the RRP, the IPT shall have the following documents
available for review. These products should be available for on-line
viewing (hard copies are not required).

1. Functional Requirements Document (FRD) for each CSCI associated with the
IPT (input into DOORS using the approved FRD template)

2. Preliminary Overview Design Specification (ODS) for each CSCI associated
with the IPT (input into DOORS using the approved ODS template)

3. Initial Requirements Traceability Matrix (generated from DOORS after
requirements have been allocated to software elements)

4. Refined, from the Concept Design Panel baseline, planning schedule
(formatted per 84K01730-107 Development Schedule Practice)

5. Detailed Implementation Schedule (to the software module/component
level) formatted per 84K01730-107 Development Schedule Practice

6. Resource requirements statement identifying the number and type of
personnel required for implementation and testing, including the time-
frames required

4.3.2.3 RRP Process

The following paragraphs describe the RRP process.

1. During the initial IPT Statement of Work assessment, the IPT will
estimate a date for the RRP. This date will be added to the RTC
Application Software master schedule to provide insight into IPT
activities.

2. Since RRP meetings are not held on a regular basis, it is incumbent upon
each IPT to coordinate a meeting time with the RRP membership whenever
the IPT is ready for the review. This coordination should be done
approximately one week in advance of the requested date.

3. At the RRP, the IPT lead will present the following information. The
format for the presentation is at the discretion of the IPT lead, but
the specified information must be covered.

• An FRD overview
• Describing the capabilities specified by the requirements
• Identification of any subsequence FRD activities

• An ODS overview
• Describing the mapping of the requirements into the RTC

Application Software architecture
• Identification of Critical and Sensitive software modules

• Overview of the implementation schedule and resource requirements
• Overview of the validation approach (e.g., facilities required,

resources, special tests)
• Discussion of OMI update planning

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

6

4. Upon acceptance of the RRP presentation:
• All FRDs will be placed under informal Configuration Management

control This establishes the requirements baseline for the effort
which can then be modified per the SDP process.

• All ODSs will be placed under informal Configuration Management
control. This establishes the design baseline for the effort
which can then be modified per the SDP process.

• The implementation schedule and resource requirements statement
will be added to the RTC Application Software master schedule for
tracking.

Note: Placing the FRD and ODS under informal Configuration Management
control provides the ability to indicate to the project that a major
milestone has been accomplished and also provides the ability to gather
requirements and design related metric information. The IPT will still
have the ability to easily modify these documents during the remainder of
the development effort. Final approval and formal Configuration Management
control will be imposed prior to completion of the validation effort.

4.4 IPT STATEMENT OF WORK IMPLEMENTATION

At the time specified by each APT’s master schedule, the IPT will implement
the applications software SOW. The process to be followed is based on the
level of effort (major or minor) necessary to implement the SOW.

1. A major SOW requires significant up-front work to ensure the timely
product delivery. Review panels are strategically used to ensure the
process is on track (ref Table 4.4-1). The implementation process is
composed of five major components:
• Requirements Definition and Capture
• Requirements Analysis and Allocation
• Software Design
• Software Production
• Testing

2. Minor SOWs combine the implementation processes that are required for
major SOWs. The ease of minor SOWs allows a single requirement
processing phase and the combination of software production and test.
Both the ACRP and the RRP are not used in minor SOW processing because
of their straight-forward nature. The following processes apply to
minor SOWs:
• Requirements modification
• Software Analysis and Design
• Software Production
• Testing

Table 4.4-1 defines when each of the application implementation processes
is required. Minor SOWs have identical processes. Major SOWs differ in
the ACRP requirement. The ACRP is not required for external SOWs because
RTC Application Software has no choice but to accomplish the task.
Internal SOWs require ACRP review to ensure the potential project is
workable, given the resources available. The implementation details are
described in the next five subsections. Validation and User Acceptance are
described in section 4.5.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

7

Statement of Work
External Internal

S/W Process Major
Effort

Minor
Effort

Major
Effort

Minor
Effort

App Change Review Panel Not
Required

Not
Required

Yes Not
Required

Requirements Capture Yes Single Yes Single
Requirements Analysis Yes Process Yes Process
Requirement Review
Panel

Yes Not
Required

Yes Not
Required

Software Design Yes Single Yes Single
Software Production Yes Process Yes Process
Unit Test Yes Yes
Validation (ref 4.5.1) Yes Yes Yes Yes
User Acceptance (ref
4.5.2)

Optional Not
Required

* Not
Required

Table 4.4-1 RTC Application Software Process Requirements
*User Acceptance is required for all products delivered during CLCS
development. User acceptance applicability is determined by the IPT during
the sustaining mode.

4.4.1 Requirements Definition and Capture

To provide a solid foundation for a RTC Application Software CSCI, it is
necessary to develop a set of functional requirements that detail the
functions, capabilities and expectations of the software.

1. The FRD will be based on the operational characteristics of the
vehicle/GSE system. Potential resources for obtaining these
characteristics are system Function Designator listings, hardware
operating specifications, schematics, LCC/OMRSD documents and GOAL
requirements. IPT system knowledge and operational experience are
critical to ensuring the necessary functionality is captured.

2. The FRD will be developed using a methodology that describes the
requirements in terms of physical world objects.

3. The IPT Lead will remain cognizant of other active IPT activities (via
an integrated IPT forum) to be aware of common requirements that could
be reused. The Common Applications Library will be searched for
potential requirements reuse.

4. The FRD will be formatted per 84K01700, RTC Application Software
Documentation Standard.

4.4.2 Requirements Analysis and Allocation

The Requirements Analysis and Allocation phase is a process where the IPT
transforms the functional requirements into a software implementation
framework. The activities of this phase include:

1. Identification and coordination of all external interfaces between the
CSCI under development, other CSCIs and the CLCS system. The IPT
coordinates with the APT to work system issues.

2. Generation of “use cases” and scenarios that illustrate the functional
requirements and the interaction between objects and events.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

8

3. Identification of potential design/code reuse components (from both the
supplier and user viewpoint).

4. Allocation of the functional requirements to the identified CSC/CSUs,
based on the above analysis activities. A cross-reference between the
FRD and the ODS is developed during this phase.

5. Development of a preliminary ODS to capture the analysis results that
apply to design issues and design allocations. The ODS will be
formatted per 84K01700, RTC Application Software Documentation Standard.
The IPT will assign criticality to CSCs and CSUs.

4.4.3 Software Design

Using the FRD and the preliminary ODS developed during the requirement
phases, a more detailed overview design of the CSCI can be developed. The
design will adhere to the RTC Application Software Architecture Standard
(84K01710). The activities of this phase are:

1. Identification and specification of the classes and objects necessary to
implement the functional requirements. The use cases/scenarios are used
as the starting point for this activity. RTC Application Software
Documentation Standard 84K01700 provides examples of required
documentation formats.

• Class descriptions are enhanced when necessary, by state
transition diagrams to help define the class’s activities.

• The classes/objects are scrutinized to identify commonality
between objects to support generalization of those objects to as
common a base class as possible. Inheritance attributes and
methods are also identified during this activity.

2. Identification and specification of the inter-process communications and
system interactions. Objects are mapped to the major architectural
elements, which assists in the detailing of necessary communication
paths.

3. Use cases/scenarios are refined until they contain sufficient
information to allow coding.

4. The ODS is updated to capture the design activities and class
specifications.

4.4.4 Software Production

During the Software Production phase, the overview design is transformed
into software code and associated documentation. Software developers write
the code, perform peer reviews and perform preliminary debug testing during
this phase.

4.4.4.1 Overview

With the RTC Application Software CSCI functional requirements allocated to
individual CSCs/CSUs and the detailed design established, the production
phase can begin. The following processes apply:

1. Implementation of each CSC/CSU will be performed using the toolset
identified for the CSC/CSU’s class of software (e.g., display, object
command/control). Reference Section 4.4.4.3.

2. All implementation will adhere to all the applicable programming
standards. Reference Section 4.4.4.2.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

9

3. The common starting point for all software development is a search of
available reuse resources for components that can be used to accelerate
development and enhance maintenance. If a component matches the
implementation needs, it will be used. The ODS will be updated to
reflect those components used.

4. Requirements traceability will be shown in both CSCs and CSUs (e.g., in
a header comment) as well as in the Requirements Traceability Matrix.

5. Prior to exiting this phase of development, each CSC/CSU must be
subjected to a peer review to detect any defects of inconsistencies and
to ensure reuse resources were used to the maximum extent possible.
Detection of problem areas during this phase is crucial to timely RTC
Application Software CSCI development.

4.4.4.2 Code Writing

Developed application software code will be compliant with all CLCS
Software Programming Standards and Guidelines. Code generated by a COTS
tool may be exempt from this requirement; check the standard for exempt
requirements.

84K00230 CLCS HCI Style Guide and Standards
84K07500-010 CLCS Programming Standard
84K01720 RTC Application Software Implementation

Standard

4.4.4.3 Tools and Languages

All RTC Application Software will be developed using object-oriented
methodology. Table 4.4-2 defines the application software tools/languages.

Application component Tool/Language
Display Monitors (with active data
display)

SL-GMS / C++

Display Monitors (without active data
display)

SL-GMS / Java / C++

End Item Managers ControlShell / C++
HCI Overhead Software Java
CCP Overhead Software C++
Editor Xemacs
Documentation Auto Generation DOC++
Requirements Capture/Definition DOORS
Configuration Management Razor
Documentation MSOffice Products

Table 4.4-2 RTC Application Software Tools and Languages

4.4.4.4 Inspection Process

Prior to exiting the production phase, all new or modified components will
be subjected to inspection. During the design phase, each CSC/CSU is
identified with a criticality classification. This designation will be
used to determine the inspection type required. A review requirement
summary is listed in table 4.4-3. Document 84K01730-104 defines the RTC
Application Software Peer Inspection Practice.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

10

Type of Component affected
Change Effort Critical Sensitive Operational

Major Peer Inspection Peer Inspection Peer Inspection
Minor Peer Inspection Walk-through Walk-through

Table 4.4-3 RTC Application Software Code Review Matrix

4.4.4.4.1 Peer Inspections

For criticality I and II software (critical and sensitive), a peer
inspection is performed by a group (two or more) of knowledgeable software
production personnel. This inspection is more formal than a walk-through,
in that review materials are distributed ahead of time and a scheduled
meeting is held. The written inspection results contain both positive and
negative findings, along with the reviewers names and inspection date(s).
Any rework necessary is coordinated between the author, the inspection
leader and the applicable IPT software focal point.

4.4.4.4.2 Walk-Throughs

For Criticality III software (operational support components), a code walk-
through will be performed by someone knowledgeable about the code (not the
author) designated by the IPT software focal point. The walk-through
provides the opportunity for a second look at the code to identify any
inconsistencies or coding problems. Any rework necessary is coordinated
between the author, the reviewer and the software focal point.

4.4.5 Testing

4.4.5.1 Unit Testing

Unit testing is an informal process performed on software components and
programs to check their general functionality and performance in a stand
alone mode or with other programs in a debug environment. The purpose of
Unit Testing is to debug the software to a degree that it can enter
integrated testing with no functional errors.

Unit Testing is the responsibility of the software developer. User
participation is encouraged to provide early insight into software
functionality and performance. Quality Assurance is not required.
Problems encountered during Unit Testing are not required to be documented.

1. Unit Test cases will be developed to perform “black box” or functional
testing.

2. Test cases will check both normal and error conditions for each input
parameter.

3. All Unit Test cases will be maintained in the Configuration Management
common repository for future regression testing.

4. For each code change, the associated Unit Test case will be modified as
necessary and then performed successfully before the CSC/CSU can be
incorporated into the integrated product. Test outputs should be
identical to previous tests for all areas not affected by the change.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

11

5. Test results will be maintained in a common repository to provide for
comparisons after follow-on tests.

6. Unit Test cases will be performed on both un-optimized (debug) and
optimized (production) versions of the developed source code. Test
results shall be identical.

Unit testing is performed on an “as needed” basis throughout the
component's life cycle. All newly developed software regardless of
criticality will go through Unit Testing. Unit Testing should check the
software’s functionality including logic and algorithm implementation.
Unit Test of reused software should check the interfaces with other
software components.

4.4.5.2 Integrated Testing

Integrated Testing is an informal process performed on software to test
functionality and performance in an integrated environment with other
software components against simulation software and/or a hardware test bed.
The purpose of Integrated Testing is to ensure that the software has no
known functional and performance problems prior to entering the Validation
phase and that the integrated software implementation is acceptable to the
software developers. The Integrated Testing environment should approximate
the actual real-time operational environment as closely as possible. The
complete suite of RTC Application Software which will be used by the
subsystem (that is available) should be loaded as well as any other
interfacing software. Development or validated simulation software may be
used. Integrated Testing may be performed against a hardware test bed
(e.g., SAIL, KATS) if deemed appropriate.

Integrated Testing is the responsibility of the software developer. User
participation is highly encouraged. Integrated testing offers an excellent
opportunity for user familiarization of the software prior to validation
testing. Quality Assurance is not required. Problems encountered during
Integrated Testing will be documented in the informal tracking system of
the Configuration Management Tool. This will provide a history of unit
test thoroughness and completeness. This problem tracking is internal to
the IPT and does not require special approval for closure.

Integrated Testing will be performed on software when the required
components have completed a level of Unit Testing acceptable to the IPT.
All newly developed software regardless of criticality is required to go
through Integrated Testing.
Integrated Testing should check:

• software functionality
• real-time performance
• user interfaces
• interfaces with reused software components
• interfaces with System Software
• interfaces with other RTC Application Software CSCIs
• interfaces with end item components

4.5

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

12

IPT VALIDATION AND USER ACCEPTANCE

The final process in the delivery of applications software is the formal
validation and user acceptance performed by systems knowledge personnel.
Depending on the change effort and the change criticality, there are
different quality support requirements. Validation is a formal process
that results in a product that could be used to control hardware. User
Acceptance is a method that uses validated software to build confidence
before using the product on flight hardware.

4.5.1 Validation

Validation is the formal process performed on software to test
functionality and performance in an integrated environment with other
software components against simulation software and/or a hardware test bed.
Validation ensures the applications software has no known functional or
performance problems and that the software implementation is acceptable to
the users. Once software has successfully completed Validation, it can be
used in an operational environment. The Validation environment should
approximate the actual real-time operational environment as close as
possible. The complete suite of RTC Application Software which will be
used by the subsystem should be loaded along with all interfacing software.
Validated simulation software and system software are required to support
the RTC Application Software validation phase. Validation may be performed
against a hardware test bed (e.g., SAIL, KATS) when deemed necessary by the
IPT.

Validation is the responsibility of System Knowledge personnel, with
assistance from Software Implementation as required. Quality is required
to support validation for changes to all critical components. The IPT and
quality assurance will work together to determine the applicability of
quality oversight for minor sensitive changes. Quality support
requirements are listed in Table 4.5-1

Type of Component affected
Change Effort Critical Sensitive Operational

Major Quality
Required

Quality
Required

Not required

Minor Quality
Required

Quality
Optional

Not required

Table 4.5-1 Validation Quality Support Requirements

Problems encountered during validation will be documented internally in the
informal tracking system of the Configuration Management Tool. This will
provide a history of unit test thoroughness and completeness. Formal PRACA
documentation will be required for problems:

• that will not be corrected prior to release to an operational
environment

• that are detected in previously validated software or components.

 Documentation of test procedures used and the test results are required
(reference Application Software Documentation Standard 84K01700).

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

13

 Validation will be performed on software when components have completed a
level of Unit Testing and Integrated Testing acceptable to the IPT. All
software regardless of criticality is required to go through Validation.
Validation should test:

• software functionality
• real-time performance
• user interfaces
• interfaces with reused Application Software
• interfaces with System Software
• interfaces with other Applications Software CSCIs
• interfaces with end item components

4.5.2 User Acceptance

User Acceptance is a systematic approach by which the user community gains
the experience and builds the confidence in the application (and system)
product. User Acceptance culminates in the global use of the application
software and underlying system software for vehicle processing. In the
development phases of CLCS, user acceptance criteria will be identified by
both the IPT and by external sources. External sources include senior
Shuttle technical representatives who will formally identify user
acceptance requirements to the CLCS project.

User acceptance requirements could include, but is not limited to, such
items as:

• Simulated power up/down (via simulation model / SAIL)
• Simulated Cryogenic tanking
• Simulated Launch Countdown (via simulation model / SAIL)
• Actual PAD cryogenic cold flow
• Actual Orbiter power up/down
• Simulated cluster test using the simulation model
• Simulated cluster test using SAIL/KATS

 An example user acceptance process:
• Assure the hands on (engineering user) is familiar with the

application product
• Use the applications product to perform nominal testing using

simulations
• Use the application to perform contingency operations using

simulations
• Demonstrate the process against hardware (using Test Preparation

Sheet (TPS) or temporary deviation)
• Modify test procedures, as required, for CLCS applications
• Perform a review to verify: familiarization, acceptance testing,

and procedure modifications are complete
• “Accept” (i.e., release) the product for daily operational support

The specific software undergoing formal user acceptance should be
validated. Quality support is not required during this phase. Any system
or application problems encountered during the acceptance process will be
documented on formal Problem Reports (PRs) by the person detecting the
anomaly. As in all formal reporting systems, the PR must be dispositioned
appropriately (i.e., constraint, no constraint and rationale) before
application product release.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

Printed documents may be obsolete. Check the CLCS Documentation Baseline web pages for current approved revision of this
document before using it for work

14

Validated simulation software is not required during acceptance testing.
This allows flexibility in the acceptance phase to exercise far fetched
test cases. It also allows for increased user familiarization without
incurring the cost of formally validating test cases within the simulation
system. Traceability is provided by the configuration management system.

Many of the processes in user acceptance are accomplished during the test /
validation phase. For example, nominal and contingency paths are tested
extensively during validation. User acceptance is not designed to be
“testing”, instead it is a method of building confidence that, those who
are required, can operate the applications software. The iterative
approach used in the applications process should resolve every error before
this phase.

In the sustaining environment, user acceptance is typically implied as the
product completes validation. For major changes to an application, the
IPT will determine the requirements for user acceptance. The IPT,
management and the user community must be comfortable with the applications
product before it is released for day to day use.

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

A

A. GLOSSARY

ACRP Applications Concept Review Panel
APT Application Software Product Team
CCMS Checkout, Control and Monitoring System
CLCS Checkout and Launch Control System
COTS Commercial Off The Shelf
CSC Computer Software Component
CSCI Computer Software Configuration Item
CSP Change Screening Panel
CSU Computer Software Unit
DDS Detailed Design Specification
FRD Functional Requirement Document
GOAL Ground Operations Aerospace Language
GSE Ground Support Equipment
HCI Human Computer Interface
HIM Hardware Interface Module
IPT Integrated Product Team
IV&V Independent Validation and Verification
KATS Kennedy Avionics Test Set
KSC Kennedy Space Center
LCC Launch Commit Criteria
NASA National Aeronautics and Space Administration
ODS Overview Design Specification
OMI Operations and Maintenance Instruction
OMRSD Operations and Maintenance Requirement Specification Document
PAE Product Assurance Engineer
PRACA Problem Reporting and Correction Action
QE Quality Engineer
ROM Rough Order of Magnitude
ROR Responsible Organization Representative
RRP Requirements Review Panel
RTC Real T ime Control
SAIL Shuttle Avionics Integration Lab
SDP Software Development Plan
SDT System Design Team
SEMP System Engineering Management Plan
SFOC Space Flight Operations Contract
SOW Statement of Work

84K00070-002 RTC Applications Software Development Plan Revision: Basic
May 12, 1998

B

B. RTC APPLICATION SOFTWARE CSCI
The following table contains the official RTC Application Software CSCI
names and descriptions.

CSCI Description
CAS Common Application Support
APU Orbiter Auxiliary Power Unit
ARM Swing Arms
BAP SRB Auxiliary Power Unit
BHY SRB Hydraulics
BRS SRB Range Safety System
CME Main Engine Controller
COM Communications
DPS Data Processing System
ECL Environment Control and Life Support
ECS Environmental Control System
EFC Electronic Flight Controls
EPD Electrical Power Distribution and Control
FCP PRSD / FC
GID Guidance
GLS Ground Launch Sequencer
HMF Hypergolic Maintenance Facility
HWS Hazardous Gas Warning System
HYD Orbiter Hydraulics
ICE ET Surface Ice
INS Instrumentation
INT Integrated Operations
KUB KU-Band Radar
LH2 Liquid Hydrogen
LO2 Liquid Oxygen
MEQ Mechanisms
MPS Main Propulsion System
MST Master
NAV Navigation
OMS Orbiter Maneuvering System
PLE Payload Test
SME Space Shuttle Main Engine
WAT FIREX Water
CCS Complex Control System

